Fluid, Electrolytes, Hypovolemia & Resuscitation

- **Physiology**
 - Total body water constant
 - Total body water fat and age dependent
 - Male 60%, Female 50%
 - Infants 80%, 1 year old 65%
 - TBW = ICF (2/3) + ECF (1/3)
 - ECF = Intravascular (25%) + Interstitial (75%)
 - Water in intracellular, intravascular, interstitial compartments in “Dynamic Equilibrium” because of semipermeable membranes and osmotic gradients
 - Sodium and Potassium – dominant cations
 - Sodium - extracellular
 - Potassium – intracellular
 - Colloid oncotic pressure (plasma protein intravascular)
 - Osmoregulation – hypothalamus
 - ADH/thirst/renal/angiotensin
 - Volume control
 - Osmoreceptors – “day to day”
 - Baroreceptors – 10-20% change in volume
 - Atria – natriuretic peptide
 - Baroreceptor modulation of volume control
 - Receptors in aorta, carotid, renal
 - Sympathetic/parasympathetic trigger hormonal changes
 - Renin angiotensin, aldosterone, atrial natriuretic peptide, renal prostaglandins

- **Surgical Patients**
 - Prone to fluid and electrolyte abnormalities because of disease and surgical care
 - “Effective” circulating volume
 - Perfuse organs
 - Third space loss ineffective
 - Not helpful with CHF or AVF
 - Normal water exchange
 - Sensible – urine, stool, vomit, sweat
 - Insensible – evaporation of skin and respiratory tract
 - GI tract – net secretory to Jejunum, reabsorption in small bowel and colon
• Fluid and Electrolyte Therapy
 o Parenteral solutions
 ▪ Lactated ringers – similar to plasma, edema, SB losses. Sodium 130
 o Isotonic saline (.9%, sodium 154)
 ▪ Possible sodium overload and hyperchloremic acidosis
 o Hypotonic (D51/4 NS, D5 ½ NS)
 o Hypertonic (3% Na, “hot salt”)
 o Plasma expanders – problems with microvascular permeability
 o **Goal is normalization of hemodynamic parameters and electrolyte concentrations while avoiding complications from too rapid correction or overcorrection**

• Volume deficit (hypovolemia)
 o Chronic – decrease skin turgor, dry mucous membranes, sunken eyes, orthostasis, tachycardia, hypothermia, BUN/Cr >15:1, HCT increased, Na decreased excretion
 o Acute – change in vital signs without tissue changes; decreased urine output
 o **Response to Hypovolemia:**

<table>
<thead>
<tr>
<th>Blood Volume</th>
<th>Supine</th>
<th>Sitting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BP</td>
<td>HR</td>
</tr>
<tr>
<td>500 (5%)</td>
<td>NML</td>
<td>NML</td>
</tr>
<tr>
<td>1000 (10-15%)</td>
<td>NML</td>
<td>NML or ↑</td>
</tr>
<tr>
<td>1500 (20%)</td>
<td>NML or ↓</td>
<td>↑</td>
</tr>
<tr>
<td>2000 (30%)</td>
<td>↓</td>
<td>↑ or ↓</td>
</tr>
</tbody>
</table>

• Resuscitation
 o Isotonic solution – lactated ringers
 o Blood and blood products
 o Colloid
 o Goal – normalization of BP, HR, Urine output
 o Monitor – Foley, CVP, Base deficit, lactate, Swan Ganz catheter
 o **Volume excess** – over resuscitation, mobilization 3rd space fluids, post op or trauma patients with increased ADH

• Maintenance fluid
 o 70 kg 2500cc water, 140 meq Na, 70 meq K
- Includes sensible and insensible losses
- Does not factor deficits or on-going losses
- Younger or smaller patients require more cc/kg because high percentage TBW in relation to body weight
- Ca, PO4, Mg, trace elements later

- Electrolyte concentration in GI secretions

<table>
<thead>
<tr>
<th>Meq/L</th>
<th>NA</th>
<th>K</th>
<th>Cl</th>
<th>HCO3</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salivary</td>
<td>50</td>
<td>20</td>
<td>40</td>
<td>30</td>
<td>–</td>
</tr>
<tr>
<td>Gastric Basal</td>
<td>100</td>
<td>10</td>
<td>140</td>
<td>–</td>
<td>30</td>
</tr>
<tr>
<td>Gastric Stim</td>
<td>30</td>
<td>10</td>
<td>140</td>
<td>–</td>
<td>100</td>
</tr>
<tr>
<td>Bile</td>
<td>140</td>
<td>5</td>
<td>100</td>
<td>60</td>
<td>–</td>
</tr>
<tr>
<td>Pancreas</td>
<td>140</td>
<td>5</td>
<td>75</td>
<td>100</td>
<td>–</td>
</tr>
<tr>
<td>Duo</td>
<td>140</td>
<td>5</td>
<td>80</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ileum</td>
<td>140</td>
<td>5</td>
<td>70</td>
<td>50</td>
<td>–</td>
</tr>
<tr>
<td>Colon</td>
<td>60</td>
<td>70</td>
<td>15</td>
<td>30</td>
<td>–</td>
</tr>
</tbody>
</table>

- Replacement ongoing fluid losses
 - Intraoperative losses
 - Anesthesia disrupts baroreceptor reflexes
 - No increase HR or increase PVR
 - Most tolerate <500 cc blood loss
 - LR 500-1000 cc/hour common
 - Post op fluid losses
 - NG, Ileostomy, fistula, edema
 - Ileus
 - 3rd space
 - Post op monitoring
 - VS, CVP, I/O, daily wts, Swan Ganz Catheter
 - Electrolytes, lactate, base Deficit
 - Urine specific gravity (1.012)
 - Urine osmolality
• **Hyponatremia**
 - Excess free water most common cause
 - Self-limiting; rarely <130 meq/L if no SIADH
 - Hyperosmolar hyponatremia 2\(^\circ\) hyperglycemia
 - Symptoms if <120 meq/L
 - Weakness
 - Fatigue
 - Muscle cramps
 - Treatment
 - Free water restriction
 - “Hot salt” if symptomatic

• **Hypernatremia**
 - Uncommon in surgical patients
 - 2\(^\circ\) free water loss
 - Associated with head trauma or post-surgical with decreased ADH
 - CNS symptoms if >160 meq/L
 - Treat slowly to avoid cerebral edema and herniation

• **Potassium**
 - Major intracellular cation (2% in ECF)
 - Concentration differences between ICF and ECF creates transmembrane potential
 - Profound effects on cardiac, skeletal, and smooth muscle
 - Total body stores dependent on muscle mass

• **Hypokalemia**
 - Raises membrane excitation potentials
 - Nerve and muscle less excitable
 - **NOTE** – Life threatening SVT in patients on Cardiac Glycosides (Digoxin)
 - Symptoms - < 2.5 meq/L
 - Muscle weakness
 - Ileus
 - **Arrhythmias**
 - Treatment
 - Oral or IV
 - No more than 40 meq/hr.
 - Monitor serum K
 - Arrhythmia meds
• Hyperkalemia
 o Decrease membrane excitation potentials
 o Nerve and muscle cells more excitable
 o Acidosis leads to K shift out of cells raising serum K
 o Alkalosis leads to K shift into cells lowering serum K
 o Insulin promotes K entry into muscle/hepatic cells lowering serum K
 o Rare in absence of renal disease
 o Excessive cellular breakdown secondary to trauma (crush injuries), vascular insufficiency, sepsis
 o Symptoms
 ▪ Arrhythmias, V-Fib
 ▪ Weakness
 ▪ Paralysis
 o Treatment
 ▪ Calcium Gluconate
 ▪ Sodium Bicarbonate
 ▪ Glucose/Insulin
 ▪ Kayexalate
 ▪ Dialysis

• Calcium
 o Homeostasis between bone, ECF, renal excretion, intestinal absorption
 o Role of PTH (Parathyroid)
 o Ionized (45%), Non-ionized, Protein bound
 o pH
 ▪ Acidosis
 • ↓ Protein bound
 • ↑ Ionized
 ▪ Alkalosis
 • ↑ Protein bound
 • ↓ Ionized
 o Albumin
 ▪ Decrease
 • ↓ Protein bound
 • ↑ Ionized
 ▪ Increase
 • ↑ Protein bound
 • ↓ Ionized
 o Key role in neuromuscular transmission, muscle contraction, enzyme regulation
• Hypercalcemia
 o Hyperparathyroidism
 o Vit D intoxication
 o Skeletal mets
 o Tumors secreting PTH “like” peptides
 o Symptoms
 ▪ Muscle fatigue
 ▪ Weakness
 ▪ Mental changes
 ▪ Pancreatitis
 ▪ Kidney stones
 o Treatment
 ▪ Surgery
 ▪ Treat etiology
 ▪ Meds if acute (>14 mg/dl)

• Hypocalcemia
 o Rare
 o S/P Thyroidectomy or Parathyroidectomy
 o Hyperventilation Syndrome causing acute alkalosis
 o Pancreatic, small bowel fistula
 o Symptoms - <8 mg/dl
 ▪ Perioral paresthesia
 ▪ Stridor
 ▪ Tetany
 ▪ Seizures
 o Treatment
 ▪ Asymptomatic
 • None
 ▪ Symptomatic
 • IV and/or PO Calcium

• Magnesium
 o Role in Neuromuscular function
 o Bone and Intracellular
 o < 1% in ECF

• Hypermagnesemia
 o Rare
- Renal failure #1 Etiology
 - Burns, crush injuries
 - Symptoms
 - Decreased DTR, Paralysis
 - Treatment
 - Calcium Gluconate
 - Ventilator
 - Pacing
 - Dialysis

- Hypomagnesaemia
 - Causes
 - Low intake
 - GI losses
 - Burns
 - Pancreatitis
 - Alcoholics
 - Symptoms
 - Neurologic
 - Neuromuscular
 - Arrhythmias
 - Contributes to hypokalemia and hypocalcemia
 - Treatment
 - If mild – Mag-oxide PO
 - If severe – Magnesium Sulfate IV
• **Pearls and Tricks for Hypotensive Patients**

- If hypotension secondary to bleeding in trauma – always stop visible or accessible bleeding **BEFORE** IV access
 - Direct pressure
 - Tourniquet
 - BP Cuff
 - Combat quaze
 - Balloon catheters
 - Mast trousers
- Understand permissive hypotension and why
- Understand transfusion protocols and coagulopathy
 - 1:1:1 transfusion
 - Hypothermia
 - Acidosis
 - Damage control surgery
- Both trauma and sepsis resuscitation can require **MASSIVE** fluid requirements secondary to ongoing losses and 3rd spacing. **EXPECT** Severe Edema.
- Days later after patient is stabilized watch for signs of fluid overload and CHF as a result of the 3rd spaced fluid becoming mobilized back into intravascular space
- **Emergency Vascular Access in Children**
 - 2 short large diameter lines
 - Hand, Arm, Saphenous
 - Intraosseous if < 6 yr.
 - Gravity flow and remove in 6 hours
 - Cutdown on saphenous or basilic vein
 - Central line
 - High complication rate
 - Femoral route preferred
- Most rapid resuscitation accomplished with saphenous cutdown and sterile IV tubing.